Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs. Advanced capabilities for materials modelling with Quantum ESPRESSO. https://doi.org/10.1021/acs.nanolett.0c02983, https://doi.org/10.1021/acs.nanolett.9b00560, https://doi.org/10.1021/acs.langmuir.7b03974, https://doi.org/10.1021/acs.nanolett.7b01202, https://doi.org/10.1021/acs.nanolett.5b05288, https://doi.org/10.1021/acs.nanolett.5b04499, https://doi.org/10.1021/acs.nanolett.5b02403, https://doi.org/10.1016/j.cpc.2020.107583, https://doi.org/10.1016/j.jmat.2020.04.005, https://doi.org/10.1016/j.jnucmat.2020.152639, https://doi.org/10.1103/PhysRevB.102.205406, https://doi.org/10.1016/j.mtphys.2020.100315, https://doi.org/10.1016/j.mtcomm.2020.101856, https://doi.org/10.1016/j.carbon.2020.06.007, https://doi.org/10.1016/j.physe.2020.114279, https://doi.org/10.1016/j.diamond.2020.107979, https://doi.org/10.1103/PhysRevB.102.144305, https://doi.org/10.1103/PhysRevB.102.094311, https://doi.org/10.1016/j.nanoms.2020.09.001, https://doi.org/10.1016/j.jngse.2020.103553, https://doi.org/10.1016/j.colsurfa.2020.124879, https://doi.org/10.1007/s40820-020-00478-2, https://doi.org/10.1016/j.materresbull.2020.110861, https://doi.org/10.1007/s11467-019-0937-9, https://doi.org/10.1016/j.physa.2020.124489, https://doi.org/10.1016/j.physrep.2020.03.001, https://doi.org/10.1103/PhysRevB.101.205419, https://doi.org/10.1016/j.carbon.2020.01.040, https://doi.org/10.1016/j.enconman.2020.112748, https://doi.org/10.1016/j.solidstatesciences.2020.106140, https://doi.org/10.1016/j.actamat.2019.11.037, https://doi.org/10.1016/j.jcrysgro.2019.125356, https://doi.org/10.1007/978-3-319-44680-6_11, https://doi.org/10.1007/978-3-319-44680-6_145, https://doi.org/10.1016/B978-0-12-816785-4.00006-9, https://doi.org/10.1016/B978-0-12-817682-5.00004-0, https://doi.org/10.1103/PhysRevX.10.011019, https://doi.org/10.1007/s10973-019-08330-5, https://doi.org/10.1016/j.physleta.2019.126017, https://doi.org/10.1016/j.radphyschem.2019.108397, https://doi.org/10.1038/s41598-019-43306-3, https://doi.org/10.1038/s42005-019-0145-5, https://doi.org/10.1103/PhysRevB.100.241409, https://doi.org/10.1109/STI47673.2019.9068079, https://doi.org/10.1186/s11671-019-2963-5, https://doi.org/10.1016/j.apsusc.2019.143739, https://doi.org/10.1016/j.polymer.2019.121988, https://doi.org/10.1016/j.ijheatmasstransfer.2019.118553, https://doi.org/10.1007/s12274-019-2467-8, https://doi.org/10.1103/PhysRevB.100.115402, https://doi.org/10.1103/PhysRevB.100.125419, https://doi.org/10.1016/j.physleta.2019.05.048, https://doi.org/10.1103/PhysRevB.100.064306, https://doi.org/10.4028/www.scientific.net/DF.23.57, https://doi.org/10.1016/j.mtphys.2019.100140, https://doi.org/10.1002/9781119468455.ch57, https://doi.org/10.1002/9781119468455.ch82, https://doi.org/10.1016/j.mtener.2019.01.003, https://doi.org/10.1103/PhysRevB.99.235413, https://doi.org/10.1142/S1793292019500759, https://doi.org/10.1080/17436753.2019.1584481, https://doi.org/10.1016/j.jconrel.2019.02.015, https://doi.org/10.1103/PhysRevB.99.144303, https://doi.org/10.1016/j.applthermaleng.2019.01.098, https://doi.org/10.1142/S1793292019500383, https://doi.org/10.1016/j.carbon.2018.10.077, https://doi.org/10.1016/B978-0-08-102391-4.00002-2, https://doi.org/10.1016/j.carbon.2018.09.074, https://doi.org/10.1016/j.matpr.2018.12.072, https://doi.org/10.1016/j.jnucmat.2018.08.054, https://doi.org/10.1016/j.mtphys.2018.11.008, https://doi.org/10.1038/s41467-018-02871-3, https://doi.org/10.1038/s41524-017-0058-3, https://doi.org/10.1103/PhysRevB.98.241405, https://doi.org/10.1103/PhysRevLett.121.236602, https://doi.org/10.1016/j.apsusc.2018.07.218, https://doi.org/10.1103/PhysRevB.98.184307, https://doi.org/10.1103/PhysRevMaterials.2.114010, https://doi.org/10.1103/RevModPhys.90.041002, https://doi.org/10.1103/PhysRevB.98.165412, https://doi.org/10.1080/01495739.2018.1466669, https://doi.org/10.1016/j.apmt.2018.04.004, https://doi.org/10.1103/PhysRevE.98.022115, https://doi.org/10.1016/j.jiec.2018.01.037, https://doi.org/10.1016/j.carbon.2018.02.044, https://doi.org/10.1103/PhysRevB.97.245413, https://doi.org/10.1103/PhysRevMaterials.2.064005, https://doi.org/10.1103/PhysRevMaterials.2.065407, https://doi.org/10.1088/1674-1056/27/5/056301, https://doi.org/10.1016/j.carbon.2017.11.030, https://doi.org/10.1103/PhysRevLett.120.075901, https://doi.org/10.1007/978-3-319-50257-1_11-1, https://doi.org/10.1007/978-3-319-50257-1_145-1, https://doi.org/10.1007/978-3-319-90362-0_27, https://doi.org/10.1103/PhysRevB.97.045202, https://doi.org/10.1016/j.carbon.2017.09.014, https://doi.org/10.1103/PhysRevMaterials.1.074401, https://doi.org/10.1103/PhysRevB.96.195401, https://doi.org/10.1016/j.nanoen.2017.09.047, https://doi.org/10.1080/15567265.2017.1286421, https://doi.org/10.1016/j.carbon.2017.07.057, https://doi.org/10.1016/j.commatsci.2017.06.047, https://doi.org/10.1016/j.commatsci.2017.07.012, https://doi.org/10.1103/PhysRevB.96.134312, https://doi.org/10.1103/PhysRevB.96.165419, https://doi.org/10.1016/j.physe.2017.06.012, https://doi.org/10.1103/PhysRevMaterials.1.045406, https://doi.org/10.1016/j.carbon.2017.05.047, https://doi.org/10.1016/j.conbuildmat.2017.04.109, https://doi.org/10.1016/j.carbon.2017.01.103, https://doi.org/10.1103/PhysRevB.95.144309, https://doi.org/10.1088/1361-6633/80/3/036502, https://doi.org/10.1103/PhysRevApplied.7.034030, https://doi.org/10.1103/PhysRevB.95.121404, https://doi.org/10.4028/www.scientific.net/MSF.889.14, https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.054, https://doi.org/10.1016/B978-0-32-346240-2.00003-0, https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.103, https://doi.org/10.1088/0953-8984/28/48/483001, https://doi.org/10.1016/j.nanoen.2016.10.016, https://doi.org/10.1103/PhysRevB.94.245420, https://doi.org/10.1103/PhysRevB.94.245437, https://doi.org/10.1080/1536383X.2016.1233966, https://doi.org/10.1088/0957-4484/27/46/465705, https://doi.org/10.1016/j.carbon.2016.08.051, https://doi.org/10.1016/j.carbon.2016.08.059, https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.072, https://doi.org/10.1103/PhysRevX.6.041013, https://doi.org/10.1080/21663831.2016.1174163, https://doi.org/10.1002/9781119242666.ch1, https://doi.org/10.1016/j.carbon.2016.05.009, https://doi.org/10.1016/j.microrel.2016.07.029, https://doi.org/10.1016/j.carbon.2016.04.001, https://doi.org/10.1016/j.carbon.2016.04.054, https://doi.org/10.1103/PhysRevB.93.235423, https://doi.org/10.1109/ASMC.2016.7491138, https://doi.org/10.1371/journal.pone.0152699, https://doi.org/10.1080/15567265.2016.1218576, https://doi.org/10.1016/j.cplett.2016.02.073, https://doi.org/10.1088/0268-1242/31/4/043001, https://doi.org/10.1088/1742-5468/2016/03/033205, https://doi.org/10.1103/PhysRevB.93.075404, https://doi.org/10.1103/PhysRevB.93.085424, https://doi.org/10.1007/978-3-319-29261-8_7, https://doi.org/10.1016/bs.aiht.2016.08.002, https://doi.org/10.1016/j.carbon.2015.09.070, https://doi.org/10.1103/PhysRevB.92.245408, https://doi.org/10.1109/WIECON-ECE.2015.7443968, https://doi.org/10.1007/s00339-015-9489-1, https://doi.org/10.1016/j.carbon.2015.07.032, https://doi.org/10.1103/PhysRevB.92.195404, https://doi.org/10.1016/j.nanoen.2015.07.026, https://doi.org/10.1103/PhysRevB.92.144301, https://doi.org/10.1016/j.snb.2015.03.111, https://doi.org/10.1103/PhysRevB.92.094301, https://doi.org/10.1103/PhysRevB.91.035416. Zahra Barani, Amirmahdi Mohammadzadeh, Adane Geremew, Chun‐Yu Huang, Devin Coleman, Lorenzo Mangolini, Fariborz Kargar, Alexander A. Balandin. HHS Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. Shunda Chen, Yong Zhang, Jiao Wang, Hong Zhao. Lucas Lindsay, Ankita Katre, Andrea Cepellotti, Natalio Mingo. Murugesan Janani, Pillalamarri Srikrishnarka, Shantikumar V. Nair, A. Sreekumaran Nair.